The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.

نویسندگان

  • Antonio Alvau
  • Maria Agustina Battistone
  • Maria Gracia Gervasi
  • Felipe A Navarrete
  • Xinran Xu
  • Claudia Sánchez-Cárdenas
  • Jose Luis De la Vega-Beltran
  • Vanina G Da Ros
  • Peter A Greer
  • Alberto Darszon
  • Diego Krapf
  • Ana Maria Salicioni
  • Patricia S Cuasnicu
  • Pablo E Visconti
چکیده

Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa.

Fertilization of the mammalian oocyte depends on the ability of spermatozoa to undergo a process known as capacitation as they ascend the female reproductive tract. A fundamental feature of this process is a marked increase in tyrosine phosphorylation by an unusual protein kinase A (PKA)-mediated pathway. To date, the identity of the intermediate PKA-activated tyrosine kinase driving capacitati...

متن کامل

Evidence for the involvement of proline-rich tyrosine kinase 2 in tyrosine phosphorylation downstream of protein kinase A activation during human sperm capacitation.

Sperm capacitation involves an increase in intracellular Ca(2+) concentration as well as in protein kinase A (PKA)-dependent protein tyrosine (Tyr) phosphorylation. Interestingly, in humans, a decrease in extracellular Ca(2+) concentration ([Ca(2+)]e) during capacitation induces an increase in Tyr phosphorylation indicating the complexity of Ca(2+) signaling during this process. In view of this...

متن کامل

Analysis of chaperone proteins associated with human spermatozoa during capacitation.

Mammalian spermatozoa must undergo a post-ejaculatory period of maturation, known as capacitation, before they can engage in the process of fertilization. Studies in the mouse have established that capacitation facilitates sperm-zona recognition via mechanisms that involve the appearance of tyrosine phosphorylated chaperone proteins on the sperm surface overlying the acrosome, the site of sperm...

متن کامل

Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions.

Phosphorylation of tyrosine residues on sperm proteins is one important intracellular mechanism regulating sperm function that may be a meaningful indicator of capacitation. There is substantial evidence that cryopreservation promotes the capacitation of sperm and this cryocapacitation is frequently cited as one factor associated with the reduced longevity of cryopreserved sperm in the female r...

متن کامل

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 143 13  شماره 

صفحات  -

تاریخ انتشار 2016